Translate

jueves, 14 de enero de 2016

SISTEMAS DE REFRIGERACIÓN USANDO ENERGÍA SOLAR TÉRMICA. MEJORAS Y SOLUCIONES TÉCNICAS.

                                  REFRIGERACIÓN POR ABSORCIÓN:

Esquema del ciclo de refrigeración por absorción.

                                                             

El sistema de refrigeración por absorción es un medio de producir frío que, al igual que en el sistema de refrigeración por compresión, aprovecha que las sustancias absorben calor al cambiar de estado, delíquido a gaseoso. Así como en el sistema de compresión el ciclo se hace mediante un compresor, en el caso de la absorción, el ciclo se basa físicamente en la capacidad que tienen algunas sustancias, como elbromuro de litio, de absorber otra sustancia, tal como el agua, en fase de vapor. Otra posibilidad es emplear el agua como substancia absorbente (disolvente) y amoníaco como substancia absorbida (soluto).
FUNCIONAMIENTO:
El ciclo más comúnmente empleado es el de agua-bromuro de litio por tener mayor eficiencia. Se emplea el bromuro de litio porque tiene gran capacidad de absorber agua y porque puede deshidratarse mediante el calor. Bajando a los detalles de este ciclo, el agua (refrigerante), que se mueve por un circuito a baja presión, se evapora en un intercambiador de calor, llamado evaporador. La evaporación necesita calor, que obtiene en un intercambiador en el que refrigera un fluido secundario (normalmente, también agua), que se lleva por una red de tuberías a enfriar los ambientes o cámaras que interese. Tras el evaporador, el bromuro de litio absorbe el vapor de agua en el absorbedor, produciendo una solución diluida o débil de bromuro en agua. Esta solución pasa al generador, donde se separan disolvente y soluto mediante calor procedente de una fuente externa; el agua va al condensador, que es otro intercambiador donde cede la mayor parte del calor recibido en el generador, y desde allí pasa de nuevo al evaporador, a través de la válvula de expansión; el bromuro, ahora como solución concentrada en agua, vuelve al absorbedor para reiniciar el ciclo.Aunque no aparece en la figura, también se suele utilizar un intercambiador de calor, poniendo en contacto, sin mezcla, los conductos absorbedor-generador y generador-absorbedor, para precalentar la solución de agua-bromuro de litio, antes de pasar al calentador (generador), mientras que, a su vez, la solución concentrada de bromuro de litio se enfría cuando va hacia el absorbedor, ya que la absorción se realiza mejor a baja temperatura. De hecho (ver párrafo siguiente) en el absorbedor debe haber un intercambiador para enfriarlo con la torre de enfriamiento.Al igual que en el ciclo de compresión, el sistema requiere una torre de enfriamiento para disipar el calor sobrante (suma del aportado por la fuente externa y el extraído de los locales o espacios refrigerados). El fluido caloportador que va a la torre discurrirá sucesivamente por dos intercambiadores situados en el absorbedor y en el condensador.Como se puede ver en el esquema, los únicos elementos mecánicos existentes en el ciclo son una bomba que lleva la solución concentrada al generador y otra, no representada, para llevar el caloportador a la torre de enfriamiento.El ciclo amoniaco-agua es en todo semejante, salvo que en este caso el refrigerante es el amoniaco y el absorbente es el agua. Se utiliza, aunque tiene menor eficiencia energética, porque tiene la ventaja de poder conseguir temperaturas inferiores a 0 ºC, es decir, en aparatos para congelar, como frigoríficos.
VENTAJAS/INCONVENIENTES DE ESTE SISTEMA:
El rendimiento, medido por el COP (coefficient of performance, en la normativa española, por el CoDeRE, Coeficiente De Rendimiento Energético), es menor que en el método por compresión (entre 0,8 y 1,2 frente a 3 y 5,5 ). Si bien es cierto que el COP obtenido mediante compresión tiene en cuenta la energía eléctrica invertida en el compresor, que no es energía primaria en si. En cambio en un sistema de absorción la energía utilizada para el cálculo del COP es el calor aportado al generador, que sí es una energía primaria evaluable. Por tanto no se pueden comparar el COP de compresión y de absorción (es mejor y más útil compararlos a través del segundo principio de la termodinámica, para valorar la calidad de la energía utilizada).Un ejemplo de esta situación podría ser una instalación de refrigeración (climatización de verano) solar: si se utilizasen placas fotovoltaicas sólo se podría utilizar un 15-20% de electricidad en comparación con unos paneles solares térmicos que podrían aprovechar hasta el 90% de la energía solar recibida, y a un precio de instalación mucho más reducido.
El conjunto completo paneles solares-absorción tendría un COP de entre 0,72 y 1,08 y el de compresión entre 0,54 (18% paneles y COP de 3, muy habitual) y 1,1 (20% paneles y COP de 5,5)
Si se utiliza la energía eléctrica de la red, para el sistema de compresión, cuando ésta llega a la toma de corriente lo hace con un rendimiento inferior al 25% sobre la energía primaria utilizada para generarla, lo que reduce mucho las diferencias de rendimiento (0,8 frente a 1,37). A pesar de ello en ciertos casos, cuando la energía proviene de una fuente de calor económica, incluso residual o un subproducto destinado a desecharse, compensa ampliamente utilizar un sistema de absorción. Es el caso de utilizar el sistema en un ciclo de trigeneración: se produce electricidad con un sistema térmico y el calor residual (alrededor de un 50% de la energía primaria empleada) se usa para el sistema de refrigeración.Al calor aportado al proceso de refrigeración se le suma el calor sustraído de la zona enfriada. Con lo que el calor aplicado puede reutilizarse. Sin embargo, el calor residual se encuentra a una temperatura más baja (a pesar de que la cantidad de calor sea mayor), con lo que sus aplicaciones son escasas.Los aparatos generadores por absorción son más voluminosos y requieren inmovilidad (lo que no permite su utilización en automóviles, lo que sería muy conveniente como ahorro de energía puesto que el motor tiene grandes excedentes de energía térmica, disipada en el radiador).
Frente a los sistemas de que utilizan paneles fotovoltaicos, los basados en la energía solar térmica brindan un mayor rendimiento, superándose el problema de déficit que sufren aquellos. De hecho, la energía solar térmica debe su eficiencia a la conversión directa en electricidad.
La energía solar térmica, por otra parte, también puede utilizarse para alimentar sistemas de calefacción de caldera de gas o eléctrica, con un apoyo de la demanda energética de entre el 10 y el 20 por ciento.

No hay comentarios:

Publicar un comentario